Search results

1 – 5 of 5
Article
Publication date: 11 November 2013

Andrea G. Chiariello, Carlo Forestiere, Giovanni Miano and Antonio Maffucci

Nowadays, nano-antennas or nanoscale absorbers made by innovative materials such as carbon nanotubes are gaining more and more interest, because of their outstanding features. The…

1203

Abstract

Purpose

Nowadays, nano-antennas or nanoscale absorbers made by innovative materials such as carbon nanotubes are gaining more and more interest, because of their outstanding features. The purpose of this paper is to investigate the scattering properties of carbon nanotubes, either isolated or arranged in arrays. The peculiar behaviour of such innovative materials is studied, taking also into account the finite length of the structure and the dependence of the scattering field from the operating temperature.

Design/methodology/approach

First a model is presented for the electrical transport along the carbon nanotubes, based on Boltzmann quasi-classical transport theory. The model includes quantistic and inertial phenomena observed in the carbon nanotube electrodynamics. The model also includes the effects of temperature. Using this electrodynamical model, the electromagnetic formulation of the scattering problem is cast in terms of a Pocklington-like equation. The numerical solution is obtained by means of the Galerkin method, with special care in handling the logarithmic singularity of the kernel. Case studies are carried out, either referred to isolated single-wall carbon nanotubes (SWCNTs) and array of SWCNTs.

Findings

The scattering properties of SWCNT are strongly influenced by the temperature and by the distance between the tubes. As temperature increases, the amplitude of the resonance peaks decreases, at a rate which is double the rate of changes of temperature. The resonance frequencies are insensitive to temperature. As for the distance between the tubes in an array, it influence the scattering resonance introducing a shift in the resonance frequencies which is appreciable for distances lower than the semi-length of the CNT. For higher distances the CNT scattered field may be regarded as the sum of the fields emitted by each CNT, as if they were isolated.

Research limitations/implications

As far as now only SWCNTs have been studied. The multi-wall carbon nanotubes would show a richer behaviour with temperature, due to the joint effect of reduction of the mean free path and increase of the number of conducting channels, as temperature increases.

Practical implications

Possible use of carbon nanotubes as absorbing material or scatterers.

Originality/value

The model presented here is based on a self-consistent and physically meaningful description of the CNT electrodynamics, which takes rigorously into account the effect of temperature, size and chirality of each CNT.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 32 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 December 2001

Lorenza Corti, Massimiliano de Magistris and Antonio Maffucci

A time domain discrete model for nonuniform transmission lines, based on a complementary formulation of the transmission line equations, is considered. By recasting the line…

Abstract

A time domain discrete model for nonuniform transmission lines, based on a complementary formulation of the transmission line equations, is considered. By recasting the line equations in terms of flux and charge, one has to discretize alternatively only one of the two equations, the other being exactly verified. This approach has been widely used in electromagnetics to evaluate the discretization error. With reference to simple examples, we show how the error estimation can be used for a selective meshing of the line, leading to much better approximation with the same computational effort.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 20 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 19 June 2007

Fabio Freschi, Maurizio Repetto, Giambattista Gruosso, Antonio Maffucci, Fabio Villone and Walter Zamboni

To apply two different integral formulations of full‐Maxwell's equations to the numerical study of interconnects in a low‐frequency range and compare the results.

Abstract

Purpose

To apply two different integral formulations of full‐Maxwell's equations to the numerical study of interconnects in a low‐frequency range and compare the results.

Design/methodology/approach

The first approach consists of a surface formulation of the full‐Maxwell's equations in terms of potentials, giving rise to a surface electric field integral equation. The equation, given in a weak form, is solved by using a finite element technique. The solenoidal and non‐solenoidal components of the electric current density are separated using the null‐pinv decomposition to avoid the low‐frequency breakdown. The second model is an extension of partial element equivalent circuit technique to unstructured meshes allowing the use of triangular meshes. Two systems of meshes tied by duality relations are defined on multiconductor systems. The key point in the definition of the equivalent network is to associate the pair primal edge/dual face to a circuit branch. Solution of the resulting electrical network is performed by a modified nodal analysis method and regularization of the outcoming matrix is accomplished by standard techniques based on the addition of suitable resistors.

Findings

Both the formulation have a regular behaviour at very low frequency. This is automatically achieved in the first approach by using the null‐pinv decomposition.

Research limitations/implications

Surface sources of fields.

Originality/value

Two different integral formulations of full‐Maxwell's equations for the numerical study of interconnects are compared in terms of low‐frequency behaviour.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 26 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 19 June 2007

Andrea Gaetano Chiariello, Giovanni Miano, Antonio Maffucci, Fabio Villone and Walter Zamboni

To investigate the possible application of carbon nanotubes (CNTs) as interconnects and antennas.

1399

Abstract

Purpose

To investigate the possible application of carbon nanotubes (CNTs) as interconnects and antennas.

Design/methodology/approach

An electromagnetic macroscopic modelling of CNT is derived. The conduction electrons of the nanotube are considered as a 2D fluid moving on the surface representing the positive ion lattice. The linearized Euler's equation describing the fluid motion is used as a macroscopic constitutive relationship to be coupled to Maxwell's equation. A surface integral formulation coupled to the fluid model is solved numerically using a finite element method. For peculiar configurations, transmission line‐like parameters of CNTs are derived.

Findings

Single wall CNT interconnects, due to the high resistance and characteristic impedance with respect to ideally scaled silicon technology, should be used in arrays and bundles.

Research limitations/implications

Only single wall CNTs are considered.

Originality/value

The paper present a novel approach to CNTs and provides a comparison among the behaviour of CNTs with respect to ideally‐scaled silicon technology.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 26 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 29 March 2011

D.K. Sharma, B.K. Kaushik and R.K. Sharma

The purpose of this paper is to explore the functioning of very‐large‐scale integration (VLSI) interconnects and modeling of interconnects and evaluate different approaches of…

Abstract

Purpose

The purpose of this paper is to explore the functioning of very‐large‐scale integration (VLSI) interconnects and modeling of interconnects and evaluate different approaches of testing interconnects.

Design/methodology/approach

In the past, on‐chip interconnect wires were not considered in circuit analysis except in high precision analysis. Wiring‐up of on‐chip devices takes place through various conductors produced during fabrication process. The shrinking size of metal‐oxide semiconductor field effect transistor devices is largely responsible for growth of VLSI circuits. With deep sub‐micron (DSM) technology, the interconnect geometry is scaled down for high wiring density. The complex geometry of interconnects and high operational frequency introduce wire parasitics and inter‐wire parasitics. These parasitics causes delay, power dissipation, and crosstalk that may affect the signal integrity in VLSI system. Accurate analysis, sophisticated design, and effective test methods are the requirement to ensure the proper functionality and reliability of VLSI circuits. The testing of interconnect is becoming important and a challenge in the current technology.

Findings

The effects of interconnect on signal integrity, power dissipation, and delay emerges significantly in DSM technology. For proper performance of the circuit, testing of interconnect is important and emerging challenge in the nanotechnology era. Although some work has been done for testing of interconnect, however, it is still an open area to test the parasitics effects of VLSI/ultra‐large‐scale integration interconnects. Efforts are required to analyze and to develop test methods for crosstalk, delay and power dissipation in current technology with solutions to minimize this effect.

Originality/value

This paper reviews the functioning of VLSI interconnects from micrometer to nanometer technology. The development of various interconnect models from simple short circuit to latest resistance inductance capacitance transmission line model are discussed. Furthermore, various methodologies such as built‐in self test and other techniques for testing interconnect for crosstalk and delay are discussed.

Details

Journal of Engineering, Design and Technology, vol. 9 no. 1
Type: Research Article
ISSN: 1726-0531

Keywords

1 – 5 of 5